Hét vraag- en antwoordplatform van Nederland

Hoe bereken je de extreme waarden bij oneven machten?

Ik moet dit weten voor toets, maar weet het niet en in het boek staat het niet bepaald duidelijk uitgelegd. Stel, je hebt de functie f(x)=0,5x³-6x²+30, als ik dan op mijn GR (Texas Instruments 84 Plus) CALC, optie maximum invoer moet ik een left bound en een right bound kiezen. Ik kies dan bijvoorbeeld, omdat in het antwoordenboek stond dat x=0 en y=30 zou zijn, left bound=-1 en right bound=1. Maar bij mij zegt hij dan dat x=1 de maximum zou zijn, en dat klopt ook wel, want dat is een hoger punt, maar waarom is dat antwoord dan niet juist?

Verwijderde gebruiker
10 jaar geleden
in: Wiskunde
806

Heb je meer informatie nodig om de vraag te beantwoorden? Reageer dan hier.

Antwoorden (1)

Extreme waarden bij oneven machten bepalen gaat precies hetzelfde als extreme waarden bepalen bij even machten. Dit doe je namelijk door middel van de afgeleide gelijk stellen aan 0:
In jouw functie f(x) = 0,5x^3 - 6x^2 + 30 geldt: f '(x) = 1,5x^2 - 12x
Bepaal nu de x waarvoor geldt dat f '(x)=0
f '(x) = 1,5x^2 - 12x = x(1,5x - 12) = 0 => x=0 of 1,5x=12 => x=0 of x=8.
Bij een schets van de grafiek zie je dat bij x=0 een maximum ligt en bij x=8 een minimum.
Invullen geeft: f(0)=30 en f(8)=0,5*8^3 - 6*8^2 + 30 = -98.
Dus extreme waarden zijn: max. is f(0)=30 en min. is f(8)=-98.

Waarschijnlijk bepaalde jouw rekenmachine de extreme waarden in het interval, alleen zou die dan x=-1 moeten aangeven op je rekenmachine, want dat is in het domein [-1,1] het laagste punt. Ik vermoed dus dat je iets fout hebt ingetikt in je rekenmachine.
(Lees meer...)
Verwijderde gebruiker
10 jaar geleden

Weet jij het beter..?

Het is niet mogelijk om je eigen vraag te beantwoorden Je mag slechts 1 keer antwoord geven op een vraag Je hebt vandaag al antwoorden gegeven. Morgen mag je opnieuw maximaal antwoorden geven.

0 / 5000
Gekozen afbeelding