Hét vraag- en antwoordplatform van Nederland

Stijgen je kansen als je ruilt?

Het gaat over het programma Deal or no deal,,

Het begint met 26 koffers ,, 7 x 1.000.000 en 19 x 75.000 of minder (in dit geval moet je de 75k en minder als verliezen beschouwen.

De deelnemer krijgt een bod van 416.000 en gaat voor no deal ,
met nog 2 koffers over waarvan 1 met 1.000.000,- en 1 met 1,- , hij kan nu zijn eigen koffer kiezen die hij aan het begin heeft gekozen of ruilen voor de overgebleven koffer.

Is het zo dat als hij zou ruilen zijn kansen om te winnen stijgen??
Aan het begin heeft hij 37% om een koffer met 1.000.000 te pakken, dus als je daar mee blind tot het einde zou spelen blijft het toch gewoon altijd 37%kans op die 1.0000.000 ..
Dus wanneer je zou ruilen met nog 2 koffers over en je weet dat er 1 koffer 1.000.000 zit dan zouden je kansen stijgen van 37% naar 50% ??

Verwijderde gebruiker
11 jaar geleden
in: Wiskunde
1.2K

Heb je meer informatie nodig om de vraag te beantwoorden? Reageer dan hier.

Antwoorden (2)

Ja, je zegt het eigenlijk zelf al. Je weet dat er in jouw koffer óf 1 dollar of 1.000.000 dollar zit. Dat is dus 50% kans op 1.000.000.

Die 37% is alleen in het begin. Dat verandert naarmate er bedragen wegvallen.
(Lees meer...)
Verwijderde gebruiker
11 jaar geleden
Deze vraag lijkt op het probleem van de drie deuren, waarbij achter één deur een grote prijs verborgen zit. De oplossing is dan dat je inderdaad beter kunt ruilen.
Het is echter essentieel bij dat probleem, dat de quizmaster weet waar de hoofdprijs zit en op grond daarvan kiest welke deur hij al eerste laat afvallen.
Het gaat nu niet om drie deuren met één hoofdprijs, maar om 26 koffers met 7 hoofdprijzen. De essentie is hetzelfde. Als de quizmaster een actieve rol heeft in de manier waarop de koffers afvallen, dan is het slim om te ruilen. Maar als hij ze ook maar random kiest uit de overgebleven niet gekozen koffers, dan maakt het niets uit.

NB de kans aan het begin is 7/26 = 27%, niet 37%.
De kans als er nog 2 koffers over zijn is 50% voor ruilen en 50% voor niet ruilen, onder voorwaarde dat de quizmaster de gang van zaken niet heeft beïnvloed. Heeft hij dat wel, dan moeten we zijn precieze strategie weten en dan wordt het een flinke rekensom.
(Lees meer...)
WimNobel
11 jaar geleden
Verwijderde gebruiker
11 jaar geleden
dat is het nou juist , als je dit helemaal blind zou spelen dan zonder te weten wat er allemaal in de koffers zat en wat er nog in die laatste 2 koffers zou zitten dan is het nog steeds 27% op een miljoen ,(maar in dat geval ook 27% als je zou ruilen) En alleen maar omdat je aan het begin een koffer hebt gekozen. Maar in dit geval weet je dat er 1 een van die koffers een miljoen zit , dat is zeg maar de invloed die dan je kansen zouden veranderen.. Net zoals in het monty hall problem kies je aan het begin , en switch je later door de extra informatie
Verwijderde gebruiker
11 jaar geleden
WimNobel, + voor je antwoord.
@donramon1, let op de zin "dat de quizmaster de gang van zaken niet heeft beïnvloed". Daar draait het om. Kansrekening is een lastige zaak.

Weet jij het beter..?

Het is niet mogelijk om je eigen vraag te beantwoorden Je mag slechts 1 keer antwoord geven op een vraag Je hebt vandaag al antwoorden gegeven. Morgen mag je opnieuw maximaal antwoorden geven.

0 / 5000
Gekozen afbeelding